\square
\qquad
\qquad
Risk and Return: Capital Marker Theory

Agenda

\qquad

- Principles Used in This Chapter \qquad
1.Portfolio Returns and Portfolio Risk
2.Systematic Risk and the Market Portfolio \qquad
3.The Security Market Line and the CAPM
\qquad
\qquad
\qquad
\qquad
\qquad

Learning Objectives

1. Calculate the expected rate of return and \qquad volatility for a portfolio of investments
2. Describe how diversification affects the returns to a portfolio of investments.
3. Understand the concept of systematic risk for an individual investment
\qquad
4. Calculate portfolio systematic risk (beta).
5. Estimate an investor's required rate of return \qquad using capital asset pricing model.
\qquad
\qquad

Principles Used in This Chapter

- Principle 2: There is a Risk-Return Tradeoff.
- We extend our risk return analysis to consider portfolios of risky investments and the beneficial effects of portfolio diversification on risk.
- In addition, we will learn more about what types of risk are associated with both higher and lower expected rates of return.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
8.1 Portfolio Returns \qquad and Portfolio Risk

Portfolio Returns and Portfolio Risk

- With appropriate diversification, we can lower the \qquad risk of the portfolio without lowering the portfolio's expected rate of return.

Some risk can be eliminated by diversification, and those risks that can be eliminated are not rewarded in the financial marketplace.

- The market will not reward you for bearing risk \qquad needlessly
\qquad

Expected Return of a Portfolio

- To calculate a portfolio's expected rate of return, we weight each individual investment's expected rate of return using the fraction of the portfolio that is invested in each investment.
- Price per share \times Number of shares/Value of Portfolio \qquad
\qquad
\qquad
\qquad

Expected Return of a Portfolio

\qquad

- Example 8.1: If you invest
25% of your money in the stock of Citi bank (C) with an expected rate of return of -32%
75\% of your money in the stock of Apple (AAPL) with an expected rate of return of 120%
- What will be the expected rate of return on this portfolio?

Expected Return of a Portfolio

\qquad

Portfolio Expected Rate of Return

$E\left(r_{\text {ponfalio }}\right)=\left[W_{1} \times E\left(r_{1}\right)\right]+\left[W_{2} \times E\left(r_{2}\right)\right]+\left[W_{3} \times E\left(r_{3}\right)\right]+\cdots+\left[W_{n} \times E\left(r_{n}\right)\right]$

- $E\left(r_{\text {portfolio }}\right)=$ the expected rate of return on a portfolio of n assets.
- $\mathrm{W}_{\mathrm{i}}=$ the portfolio weight for asset i .
- Percentage of the total portfolio by value
- $E\left(r_{i}\right)=$ the expected rate of return earned by asset i.
- $\mathrm{W}_{1} \times \mathrm{E}\left(\mathrm{r}_{1}\right)=$ the contribution of asset 1 to the portfolio expected return.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Checkpoint 8.1

\qquad

Calculating a Portfolio's Expected Rate of Return
Penny Simpson has her first full-time job and is considering how to invest her savings. Her dad suggested she invest no more than 25% of her savings in the stock of her employer, Emerson Electric (EMR), so she is considering investing the remaining 75% in a combination of a risk-free investment in U.S. Treasury bills, currently paying 4\%, and Starbucks (SBUX) common stock. Penny's father has invested in the stock market for many years and suggested that Penny might expect to earn 9% on the Emerson shares and 12% from the Starbucks shares. Penny decides to put 25\% in Emerson, 25\% in Starbucks, and the remaining 50\% in Treasury bills. Given Penny's portfolio allocation, what rate of return should she expect to receive on her investment?

Checkpoint 8.1

\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad

Checkpoint 8.1

STEP 2: Decide on a solution strategy

The portiolo expected rate of retum is simply a weighted average of the expected rates of retum of the inves: ments in the portiolio. So we use Equation (8-1) to calcuate the expected rate of retum for Penny's portiolio. Fill in the shaded cels under the "Product" column in the following table to calcuate a weighted average. \qquad

	E(Retum) \times	Welght $=$	Product
U.S. Treasury bills	4.0%	0.50	
Emerson Electric (EMR)	8.0%	0.25	
Starbucks (SBUX)	12.0%	0.25	
Portfolio E (Return) $=$ Sum of product column			

Porffolio $\mathrm{E}($ Return $)=$ Sum of product column

Checkpoint 8.1

\qquad

STEP 3: Solve
We can use Equation (8-1) to calculate the expected rate of retum for the portiolo as follows

$=(1 / 2 \times .04)+(1 / 4 \times .08)+(1 / 4 \times .12)=.07$ or 7%
\qquad
\qquad
Atemativel, by filing out the table described above we got the same resuit.
Treasury bills
Emerson Electric (EMR)
Starbucks (SBUX)

E(Return)	Weight	Product
4.0%	0.50	2.0%
8.0%	0.25	2.0%
12.0%	0.25	3.0%
Portolio E(Return) $=$	7.0%	

\qquad
Emerson Electric (EMR)
Starbucks (SBUX)
Portfolio E(Return) $=$ \qquad
\qquad
\qquad

Checkpoint 8.1

STEP 4: Analyze

The expected rate of retum for the portioio composed of 50% invested in Treasury bils, 25% in Emerson Elec. tic stock, and the remaining 25% in Starbucks stock is 7%. Note that we have refered to the Treasury bill rate as is expected rate of retum. This is techrically accurate because this retum is assumed to be risk-free. That is, (fyou purchase a Treasiry bil that promises to pay you 4\%, because this security is risk-tee, this is the only pos
\qquad rate of retum ior the portiofo in exactly the same way regardess of the risk of the investments contained in the partolio. However, as we learn next, the risk of the portoio is aflected by the riskiness of the returns of the ind
\qquad
\qquad
\qquad

Evaluating Portfolio Risk

- Unlike expected return, standard deviation is not generally equal to the a weighted average of the standard deviations of the returns of investments held in the portfolio.
- This is because of diversification effects.

Portfolio Diversification

\qquad

- The effect of reducing risks by including a large number of investments in a portfolio is called diversification.
- As a consequence of diversification, the standard deviation of the returns of a portfolio is typically less than the average of the standard deviation of the returns of each of the individual investments.

Portfolio Diversification

- The diversification gains achieved by adding \qquad more investments will depend on the degree of correlation among the investments.
- The degree of correlation is measured by using the correlation coefficient. \qquad
\qquad
\qquad
\qquad

Portfolio Diversification

- The correlation coefficient can range from - 1.0 (perfect negative correlation), meaning two variables move in perfectly opposite directions to +1.0 (perfect positive correlation), which means the two assets move exactly together.
- A correlation coefficient of 0 means that there is no relationship between the returns earned by the two assets.

Portfolio Diversification

\qquad

- As long as the investment returns are not perfectly positively correlated, there will be diversification benefits.
- However, the diversification benefits will be greater when the correlations are low or positive.
- The returns on most investment assets tend to be positively correlated (tend to move up \qquad and down together).

Diversification Lessons

. A portfolio can be less risky than the average risk \qquad of its individual investments in the portfolio.
2. The key to reducing risk through diversification is to combine investments whose returns do not move together. \qquad
\qquad
\qquad
\qquad

Calculating the Standard Deviation of a Portfolio Returns

$$
\sigma_{\text {porfolio }}=\sqrt{W_{1}^{2} \sigma_{1}^{2}+W_{2}^{2} \sigma_{2}^{2}+2 W_{1} W_{2} \rho_{1,2} \sigma_{1} \sigma_{2}}
$$

Important Definitions and Concepts:

- $\sigma_{\text {pengatio }}=$ the standard deviation in porffolio returns,
- $W_{i}=$ the proportion of the porffolio that is invested in asset i,
- $\sigma_{i}=$ the standard deviation in the rate of return earned by asset i, and
- $\rho_{i j}=$ the correlation coefficient between the rates of return earned by assets i and j. The symbol $\rho_{i j}$ (pronounced "rho") represents the correlation coefficient between the rates of return for asset 1 and asset 2 .

Calculating the Standard Deviation of a Portfolio Returns

- Determine the expected return and standard deviation of the following portfolio consisting of two stocks that have a correlation coefficient of .75.

Portfolio	Weight	Expected Return	Standard Deviation
Apple	.50	.14	.20
Coca-Cola	.50	.14	.20

Calculating the Standard Deviation of a Portfolio Returns

- Expected Return $=.5(.14)+.5(.14)$
$=.14$ or 14%

Calculating the Standard Deviation of a Portfolio Returns

Checkpoint 8.2

Evaluating a Portfolio's Risk and Return

Sarah Marshall Tipton is considering her 401(k) retirement portfolio and wonders if she should move some of her money into international investments. To this point in her short working life (she graduated just four years ago), she has simply put her retirement savings into a mutual fund whose
investment strategy mimicked the returns of the S\&P 500 stock index (large company stocks). This
fund has historically earned a return averaging 12% over the last 80 or so years, but recently the
returns were depressed somewhat, as the economy was languishing in a mild recession. Sarah is
considering an international mutual fund that diversifies its holdings around the industrialized
economies of the world and has averaged a 14% annual rate of return. The international fund's
economies of the world and has averaged a 14% annual rate of return. The international fund's
higher average return is offset by the fact that the standard deviation in its returns is 30% compared to only 20% for the domestic index fund. Upon closer investigation, Sarah learned that the domestic and international funds tend to earn high returns and low returns at about the same times in the business cycle such that the correlation coefficient is .75 . If Sarah were to move half her money into the international fund and leave the remainder in the domestic fund, what would her expected portfolio return and standard deviation in portfolio return be for the combined portfolio?

Checkpoint 8.2			
STEP 1: Picture the problem			
We can visualze the expected rates of retum and corresponding standard deviations as foliows			
Investment Fund	Expected Return	Standard Deviation	Investment Proportion
S\&P 500 Fund International Fund Portfolio	12\%	20\%	50\%
	14\%	30\%	50\%
			100\%
The chalenge Sarah faces is estimating the partolio's expected retum and standard deviation when she places hat her money in each of the two mutual funds. She needs answers to place in the shaded squeres in the gid on the prevous page.			
STEP 2: Decide on a solution strategy			
The partolio expected rate of retum is simply a weighted average of the expected rates of retum of the investments in the portiolio. However, the standard deviation is a bit more complicated as diversification can lead to a reduction In the standard deviation below the weighted average of the standard devations of the investments in the portiolo. We use Equations (8-1) and (8-2) to caloulate the expected rate of retum and standard deviation for the portiolo.			

Checkpoint 8.2

STEP 3: Solve
Calculating the Expected Return for the Portiolio.
We use Equation (8-1) to calculate the expected rate of return for the portfolio as tollows:

$$
\begin{aligned}
& =(1 / 2 \times .12)+(1 / 2 \times .14)=.13 \text { or } 13 \%
\end{aligned}
$$

Calculating the Standard Deviation for the Porttolio.
he standard deviation can be caculated using Equation (8-2) as follows:

$$
\begin{aligned}
\sigma_{\text {pottioio }} & =\sqrt{W_{1}^{2} \sigma_{1}^{2}+W_{2}^{R} \sigma_{2}^{2}+2 W_{1} W_{2} p_{1,2} \sigma_{\mid} \sigma_{2}} \\
& =\sqrt{\left(.5^{2} \times .20^{2}\right)+\left(.5^{2} \times .30^{2}\right)+(2 \times .5 \times .5 \times .75 \times .20 \times .30)} \\
& =.2350023 .5 \%
\end{aligned}
$$

Checkpoint 8.2

STEP 4: Analyze
STEP 4: Analyze fund is 13%, which plots exactly hat way between the two investments' expected returns on the folliowing graph:

However, the standard deviation of the portiolio is not equal to 25%, the mid-point between the standard deviatorns of 20% and 30% (ie. the weighted average of the two investivents' standard deviations). It is instead, equal to chly 2.5%, which shows that we gain something from diversiyng between the international and domestic
makkots. The roturs in these two makkots ire not perfoctly posithvoly corroitad, so thero is some red
the standard deviation of the portiolo that is gained by puting the two investment atematies together.
\qquad

Checkpoint 8.2: Check Yourself
Evaluate the expected return and standard deviation of the portfolio where the correlation is assumed to be .20 and Sarah still places half of her money in each of the funds.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Step 1: Picture the Problem

- We can visualize the expected return, standard deviation and weights as follows:

Investment Fund	Expected Return	Standard Deviation	Investment Weight
S\&P500 fund	$\mathbf{1 2 \%}$	$\mathbf{2 0 \%}$	$\mathbf{5 0 \%}$
Internation al Fund	14%	$\mathbf{3 0 \%}$	$\mathbf{5 0 \%}$
Portfolio			100%

\qquad
\qquad

- Sarah needs to determine the answers to place in the empty squares.
\qquad
\qquad

Step 2: Decide on a Solution Strategy

\qquad

- The portfolio expected return is a simple \qquad weighted average of the expected rates of return of the two investments given by \qquad equation 8-1.
- The standard deviation of the portfolio can be \qquad calculated using equation $8-2$. We are given the correlation to be equal to . 20 . \qquad
\qquad

\qquad

Step 3: Solve
Portfolio Expected Rate of Return $E\left(r_{\text {porfowio }}\right)=\left[W_{1} \times E\left(r_{1}\right)\right]+\left[W_{2} \times E\left(r_{2}\right)\right]+\left[W_{3} \times E\left(r_{3}\right)\right]+\cdots+\left[W_{n} \times E\left(r_{n}\right)\right]$ $\begin{aligned} \text { - } & \mathrm{E}\left(\mathrm{r}_{\text {porffolio }}\right) \\ & =\mathrm{W}_{5 \text { spposo }} \mathrm{E}\left(\mathrm{r}_{\text {seps500 }}\right)+\mathrm{W}_{\text {International }} \mathrm{E}\left(\mathrm{r}_{\text {International }}\right) \\ & =.5(12)+.5(14) \\ & =13 \% \end{aligned}$

Step 3: Solve

\qquad

$$
\sigma_{\text {porfolio }}=\sqrt{W_{1}^{2} \sigma_{1}^{2}+W_{2}^{2} \sigma_{2}^{2}+2 W_{1} W_{2} \rho_{1,2} \sigma_{1} \sigma_{2}}
$$

- Standard deviation of Portfolio
\qquad
$=\sqrt{ }\left\{\left(.5^{2} \times .2^{2}\right)+\left(.5^{2} \times .3^{2}\right)+(2 \times .5 \times .5 x .20 \times .2 x .3)\right\}$
$=\sqrt{ }\{.0385\}$
$=.1962$ or 19.62% \qquad

Step 4: Analyze

\qquad

- The standard deviation of the portfolio is less than \qquad 25% at 19.62% because of the diversification benefits.
- Since the correlation between the two funds is less than 1 , combining the two funds into one portfolio results in portfolio risk reduction.
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Systematic Risk and Market Portfolio

- It would be an onerous task to calculate the correlations when we have thousands of possible investments.
- Capital Asset Pricing Model or the CAPM provides a relatively simple measure of risk.

Systematic Risk and Market Portfolio

\qquad

- CAPM assumes that investors chose to hold \qquad the optimally diversified portfolio that includes all risky investments. \qquad
- This optimally diversified portfolio that includes all of the economy's assets is referred to as the market portfolio.

Systematic Risk and Market Portfolio

- According to the CAPM, the relevant risk of an \qquad investment relates to how the investment contributes to the risk of this market portfolio.

Systematic Risk and Market Portfolio

- To understand how an investment contributes to the risk of the portfolio, we categorize the risks of the individual investments into two categories:
- Systematic risk, and
- Unsystematic risk

Systematic Risk and Market Portfolio

\qquad

- The systematic risk component measures the contribution of the investment to the risk of the market.
- For example: War, hike in corporate tax rate.
- The unsystematic risk is the element of risk that \qquad does not contribute to the risk of the market.
\qquad investment is combined with other investments.
\qquad management.
\checkmark

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Systematic Risk and Beta

\qquad

- Systematic risk is measured by the beta \qquad coefficient,
Beta estimates the extent to which a particular investment's returns vary with the returns on the market portfolio.
- In practice, it is estimated as the slope of a straight line (see figure 8-3)

\qquad

Beta

\qquad

- Table 8-1 illustrates the wide variation in Betas for various companies.
- Utilities companies can be considered less \qquad risky because of their lower betas.
- A 1% drop in market could lead to a $.74 \%$ drop in AEP and
- A much larger 2.9\% drop in AAPL.

Calculating Portfolio Beta

- The portfolio beta measures the systematic \qquad risk of the portfolio
- Portfolio beta is calculated by taking a simple weighted average of the betas for the individual investments contained in the portfolio.
- Same portfolio weights we have been using
\qquad

Important Definitions and Concepts:
- $W_{i}=$ the proportion of the portfolio that is invested in the Asset i,
 - $\beta_{i}=$ the beta coefficient for Asset i, and

assets contained in the portfolio
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating Portfolio Beta

\qquad

- Example 8.2 Consider a portfolio that is \qquad comprised of four investments with betas equal to $1.5, .75,1.8$ and .60 . \qquad
- If you invest equal amount in each investment, what will be the beta for the portfolio? \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Security Market Line and the CAPM

\qquad

- CAPM also describes how the betas relate to \qquad the expected rates of return that investors require on their investments. \qquad
- The key insight of CAPM is that investors will require a higher rate of return on investments
\qquad with higher betas.
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Legend:

\% Market Portfolio, $W_{\text {maner }}$	\% Risk-Free Asset, $\mathrm{W}_{\text {nux. tree }}$	Portfolio Beta, Brontule	Expected Portfolio Return, $\mathrm{E}\left(\mathrm{r}_{\text {mentiota }}\right)$
0\%	100\%	0.0	6.0\%
20\%	80\%	0.2	7.0\%
40\%	60\%	0.4	8.0\%
60\%	40\%	0.6	9.0\%
80\%	20\%	0.8	10.0\%
100\%	0\%	1.0	11.0\%
120\%	-20\%	1.2	12.0\%

\qquad

The Security Market Line and the CAPM

- The straight line relationship between the betas \qquad and expected returns in Figure 8-4 is called the security market line (SML),
- Its slope is often referred to as the reward to risk ratio.
\qquad
- SML is a graphical representation of the CAPM. \qquad
\qquad
\qquad
\qquad

The Security Market Line and the CAPM

- SML can be expressed as the following \qquad equation, which is also referred to as the CAPM pricing equation:

$$
E\left(r_{\text {Asset } j}\right)=r_{f}+\beta_{\text {Asset } j}\left[E\left(r_{\text {market }}\right)-r_{f}\right]
$$

The Security Market Line and the CAPM

\qquad

- The higher the systematic risk of an investment, the higher the expected rate of return an investor would require to invest in the asset.
- This is consistent with Principle 2: There is a Risk-Return Tradeoff.

Using the CAPM to Estimate Required Rates of Return

- Example 8.2 What will be the expected rate of \qquad return on AAPL stock with
- a beta of 1.49
- if the risk-free rate of interest is 2% and
\qquad
- if the market risk premium is estimated to be 8% ?

Using the CAPM to Estimate Required Rates of Return

$$
\begin{array}{rl}
E\left(r_{\text {Asset } j}\right)=r_{f}+\beta_{\text {Asset } j}\left[E\left(r_{\text {markec }}\right)-r_{f}\right] \\
, ~ & \mathrm{E}\left(\mathrm{r}_{\mathrm{AAPL}}\right)
\end{array}=.02+1.49(.08)
$$

Checkpoint 8.3

Estimating the Expected Rate of Return Using the CAPM

Jerry Allen graduated from the University of Texas with a finance degree in the spring of 2010 and took a job with a Houstonbased investment banking firm as a financial analyst. One of his first assignments is to investigate the investorexpected rates of return for three technology firms: Apple (APPL), Dell (DELL), and Hewlett Packard (HPQ). Jerry's supervisor suggests that he make his estimates using the CAPM where the risk-free rate is 4.5%, the expected return on the market is 10.5%, and the risk premium for the market as a whole (the difference between the expected return on the market and the risk-free rate) is 6%. Use the two estimates of beta provided for these firms in Table 8.1 to calculate two estimates of the investor-expected rates of return for the sample firms.

Checkpoint 8.3

STEP 2: Deoide on a solution strategy
Although the expected rates of retum plot tiong the security market ine, we can solve for them directy by sub-
stotiting into the CAPM formua found in Equation (8-c)
STEP 3: Solve
Soling for the expected rotum for Applo using the beta from Yahoo and the Bota from MSN and a risk-froe rate of 4.5% and a makeot risk premium of 6% yelds the following
$17.4 \%=21.9 \%$ 隹

- Apple expected r
Crlcultating the expected roturn with the CAPM equanion uing
the treee tectnology fims yelds the following results:

Beta E(return) Yahoo MSN Yahoo MSN Apple Inc. (APPL) 2.90 2.58 21.90% 19.98% Dell Inc. (DELL.) 1.81 1.37 15.36% 12.27% Hewlett Packard (HPQ) 1.27 1.47 12.12% 13.32%

Checkpoint 8.3: Check Yourself
 Estimate the expected rates of return for the three
 utility companies, found in Table 8-1, using the 4.5\% risk-free rate and market risk premium of 6%

\qquad

Step 1: Picture the Problem

\qquad

- The graph shows that as beta increases, the \qquad expected return also increases.
- When beta $=0$, the expected return is equal to the risk free rate of 4.5%.

Step 2: Decide on a Solution Strategy

\qquad

- We can determine the required rate of return \qquad by using CAPM equation $8-6$. The betas for the three utilities companies (Yahoo Finance \qquad estimates) are:
- AEP $=0.74$
- DUK $=0.40$
- CNP $=0.82$ \qquad
\qquad
\qquad

Step 3: Solve
$E\left(r_{\text {Asset } j}\right)=r_{f}+\beta_{\text {Asset } j}\left[E\left(r_{\text {markect }}\right)-r_{f}\right]$
- $\mathrm{E}($ return $):(\mathrm{AEP})=4.5 \%+0.74(6)=8.94 \%$
$\mathrm{E}($ return $):(\mathrm{DUK})=4.5 \%+0.40(6)=6.9 \%$
- $\mathrm{E}($ return $):(\mathrm{CNP})=4.5 \%+0.82(6)=9.42 \%$

Step 4: Analyze
- The expected rates of return on the stocks vary
depending on their beta.
- Higher the beta, higher is the expected return.

[^0]: of refim, where the weights are the proportions of each investmen

