Investment Decision Criteria

Principles Applied in This Chapter

- Principle I: Money Has a Time Value.
- Principle 2:There is a Risk-Return Tradeoff.
- Principle 3: Cash Flows Are the Source of Value.
- Principle 5: Individuals Respond to Incentives.

Learning Objectives

I. Understand how to identify the sources and types of profitable investment opportunities.
2. Evaluate investment opportunities using net present value and describe why net present value is the best measure to use.
3. Use the profitability index, internal rate of return, and payback criteria to evaluate investment opportunities.
4. Understand current business practice with respect to the use of capital-budgeting criteria

The Typical Capital-Budgeting Process

- Phase I:The firm's management identifies promising investment opportunities.
- Phase II: The investment opportunity's value- creating potential (for shareholders) is thoroughly evaluated.

Types of Capital Investment Projects

I. Revenue enhancing Investments,
2. Cost-reduction investments, and
3. Mandatory investments that are a result of government mandates

Types of Capital Investment Projects

To determine the desirability of investment proposals, we can use several analytical tools such as:

Net Present Value (NPV),
Equivalent Annual Cost (EAC), Internal Rate of Return (IRR), and Profitability Index (PI),
Discounted Payback Period.

Net Present Value

- The net present value (NPV) is the difference between the present value of cash inflows and the cash outflows.
- NPV estimates the amount of wealth that the project creates.
- Decision Criteria:

Investment projects should be
Accepted if the NPV of the project is positive and Rejected if the NPV is negative.

Calculating an Investment's NPV

The Problem

Saber Electronics provides specialty manufacturing services to defense contractors located in the Seattle,WA area.
The initial outlay is $\$ 3$ million and, management estimates that the firm might generate cash flows for years one through five equal to $\$ 500,000 ; \$ 750,000 ; \$ 1,500,000$; $\$ 2,000,000$; and $\$ 2,000,000$.
Saber uses a 20% discount rate for projects of this type. Is this a good investment opportunity?

Step 1: Picture the Problem

Step 2: Decide on a Solution Strategy

- We need to analyze if this is a good investment opportunity.
- We can do that by computing the Net Present Value (NPV), which requires computing the present value of all cash flows.

Step 3: Solve

Using a Mathematical Formula

Step 3: Solve

- $\mathrm{NPV}=-\$ 3 \mathrm{~m}+\$.5 \mathrm{~m} /(1.2)+\$.75 \mathrm{~m} /(1.2)^{2}+\$ 1.5 \mathrm{~m} /(1.2)^{3}$ $+\$ 2 \mathrm{~m} /(\mathrm{I} .2)^{4}+\$ 2 \mathrm{~m} /(\mathrm{I} .2)^{4}$
- NPV = -\$3,000,000 + \$416,666.67 + \$520,833.30 + $\$ 868,055.60$ + \$964,506 + \$803,755. 10
- $\mathrm{NPV}=\$ 573,8 \mathrm{I} 7$
- Use the cash flow keys

Step 4: Analyze

- The project requires an initial investment of $\$ 3,000,000$ and generates futures cash flows that have a present value of $\$ 3,573,817$.
- Consequently, the project cash flows are $\$ 573,817$ more than the required investment.
- Since the NPV is positive, the project is an acceptable project.

Independent Versus Mutually Exclusive Investment Projects

- An independent investment project is one that stands alone and can be undertaken without influencing the acceptance or rejection of any other project.
- Accepting a mutually exclusive project prevents another project from being accepted.

Choosing Between Mutually Exclusive Investments

If mutually exclusive investments have equal lives, we will calculate the NPVs and choose the one with the higher NPV.

Choosing Between Mutually Exclusive Investments

If mutually exclusive investments do not have equal lives, we must calculate the Equivalent Annual Cost (EAC), the cost per year.

- We will then select the one that has a lower EAC.
- We convert the PV into an annuity payment
- EAC = NPV/PVAIF

Choosing Between Mutually Exclusive Investments

Computation of EAC

$$
\begin{aligned}
E A C= & \frac{\text { PV of Costs }}{P V A I F} \\
& =\frac{C F_{0}+\frac{C F_{1}}{(1+i)}+\frac{C F_{2}}{(1+i)^{2}}+\cdots+\frac{C F_{n}}{(1+i)^{n}}}{\frac{1}{i}\left(1-\frac{1}{(1+i)^{n}}\right.}
\end{aligned}
$$

The Problem

What is the EAC for a machine that costs $\$ 50,000$, requires payment of $\$ 6,000$ per year for maintenance and operation expense, and lasts for 6 years?
Assume that the discount rate is 9% and there will be no salvage value associated with the machine.
In addition, you intend to replace this machine at the end of its life with an identical machine with identical costs.

Step 1: Picture the Problem

$$
\mathrm{EAC}=?
$$

Step 2: Decide on a Solution Strategy

Here we need to calculate the EAC, which will tell us the annual cost for a machine that lasts 6 years.
EAC can be computed using a mathematical formula or financial calculator.

Step 3: Solve

Using a Mathematical Formula

It requires 2 steps:
I. Computation of NPV
2. Computation of EAC

Convert PV into annuity payment - divide NPV by PVA interest factor

Step 3: Solve (cont.)
 Cash Flow

Cash Flow
Cash Flow

NPV $=-\$ 50,000+$ PV of \$6,000 each year
$=-\$ 50,000+-\$ 6,000$ (PV of Annuity Factor)
$=-\$ 50,000+-\$ 6,000\left\{\left[1-1 /(1.09)^{6}\right] / 0.09\right\}$
$=-\$ 50,000+-\$ 6,000\{4.4859)=-\$ 76,915$

Step 3: Solve (cont.)

$E A C=N P V \div$ PVA Interest Factor
$=-\$ 76,915 \div 4.4859$
$=-\$ 17,145.95$

Step 3: Solve (cont.)

Using a Financial Calculator

- Data and Key Input

CF; -50000; ENTER
;-6000; ENTER
;6; ENTER
\downarrow NPV;8; ENTER
CPT
\downarrow
This is the PV of the cash flows

Step 3: Solve (cont.)

The next step is to convert the PV into an annuity payment

Enter

- $N=6$
- $1 / y=9$
- $\mathrm{PV}=-76915$
- $\mathrm{FV}=0$
- $\mathrm{PMT}=-\mathrm{I} 7,145.86$

Thus EAC $=\$-17,145.86$

Step 4: Analyze

EAC indicates the annual cost that is adjusted for time value of money. Here EAC is equal to $-\$ 17,145.86$.

Internal Rate of Return

The internal rate of return (IRR) of an investment is the discount rate that results in a zero NPV for the project It is analogous to the yield to maturity (YTM) on a bond

Internal Rate of Return

Internal Rate of Return

Decision Criteria:

- Decision Criteria:

Investment projects should be
Accepted if the IRR is above the hurdle rate Rejected if the IRR is below the hurdle rate

The Problem

Knowledge Associates is a small consulting firm in Portland, Oregon, and they are considering the purchase of a new copying center for the office that can copy, fax, and scan documents. The new machine costs $\$ 10,010$ to purchase and is expected to provide cash flow savings over the next four years of $\$ 1,000 ; \$ 3,000 ; \$ 6,000$; and $\$ 7,000$.
If the discount rate the firm uses to value the cash flows from office equipment purchases is 15%, is this a good investment for the firm?

Step 1: Picture the Problem

Step 2: Decide on a Solution Strategy

- Here we have to calculate the project's IRR. IRR is equal to the discount rate that makes the present value of the future cash flows (in years I-4) equal to the initial cash outflow of \$10,010.

Step 3: Solve

Data and Key Input

CF; - I00000; ENTER
\downarrow IOOO; ENTER
\downarrow; I; ENTER
\downarrow;3000; ENTER
\downarrow; I; ENTER
\downarrow;6000; ENTER
\downarrow; I;ENTER
\downarrow; 7000; ENTER
${ }^{\downarrow}$ I; ENTER
IRR; CPT

Display
$C F O=-100000$
COI=1000
$\mathrm{FOI}=1.00$
C02 $=3000$
FO2 $=1.00$
C03 $=6000$
$\mathrm{FO} 3=1.00$
$\mathrm{CO}=7000$
$\mathrm{FO} 4=1.00$
$I R R=19 \%$

Step 4: Analyze

The new copying center requires an initial investment of $\$ 10,010$ and provides future cash flows that offer a return of 19%. Since the firm has decided 15% as the minimum acceptable return, this is a good investment for the firm.

Complications with IRR: Unconventional Cash Flows

- If the cash flow pattern is non conventional i.e. cash inflow followed by a series of cash outflows (as in the case of a loan), NPV greater than zero indicates that IRR is less than the discount rate used to calculate the NPV.
- NPV leads to the appropriate decision in both conventional and unconventional cash flow pattern.

Complications with IRR: Multiple Rates of Return

Although any project can have only one NPV, a single project can, under certain circumstances, have more than one IRR

The Problem

McClary Custom Printers is considering whether to purchase a printer. The printer costs $\$ 200,000$ to purchase, and McClary expects it can earn an additional $\$ 1.2$ million in cash flows in the printer's first year of use. However, there is a problem with purchasing the printer today because it will require a very large expenditure in year 2, such that year 2's cash flow is expected to be $-\$ 2.2$ million. Finally, in year 3 , the printer investment is expected to produce a cash flow of $\$ 1.2$ million. Use the IRR to evaluate whether the printer purchase will be worthwhile.

Step 1: Picture the Problem

Step 2: Decide on a Solution Strategy

- To solve the problem, we can construct an NPV profile that reports the NPV at several discount rates.
- We will use discount rates of 0% to 200%, in increments of 50%, to compute the NPV.

Step 3: Solve

- The NPV profile on next slide is based on various discount rates. For example, NPV at discount rate of 50% is computed as follows:
- NPV $=-\$ 200,000+\$ 1,200,000 /(1.5)^{1}+-2,200,000 /(1.5)^{2}$ + \$1,200,000/(1.5) ${ }^{3}$
$=-\$ 22,222.22$

Step 3: Solve

Discount Rate	NPV
0%	$\$ 0$
50%	$-\$ 22,222.22$
100%	$\$ 0$
150%	$\$ 4,800$
200%	$\$ 0$

Step 4: Analyze

- There are three IRRs for this project 0\%, 100% and 200%. At all of these rates, NPV is equal to zero.
- However, NPV will be a better decision tool to use under this situation as it is not subject to multiple answers like IRR.

Using the IRR with Mutually Exclusive Investments

Figure II.I shows that if we use NPV, project AA+ is better while if we use IRR, project BBR is better. How to select under such circumstances?

- Use NPV as it will give the correct ranking for the projects.

Figure 11.1 Ranking Mutually Exclusive Investments: NPV vs. IRR

(Panel a) Expected Cash Flows

Cash Flows		
Year	AA+	BBR
0	$\$(500,000)$	$\$(500,000)$
1	100,000	400,000
2	200,000	300,000
3	300,000	200,000
4	400,000	200,000
5	500,000	100,000
NPV	$\$ 412,730$	$\$ 370,241$
IRR	38%	52%

- Both altematives have positive NPVs and IRRs that exceed Apex's 15\% required rate of return.
- However, the projects are ranked differently using NPV or IRR: AA + has the higher NPV while BBR has a higher IRR.
- The ranking difference is due to the effect of discounting and the difference in the patterns of the cash flows for the two projects.
- AA+ cash flows increase over time while BBR's decrease.
- Higher discount rates have a disproportionate effect on present values as we see in Panel B.

Figure 11.1 Ranking Mutually Exclusive Investments: NPV vs. IRR (cont.)

(Panel B) NPV Profiles

NPV Profiles		
Discount Rate	AA+	BBR
0%	$\$ 1,000,000$	$\$ 700,000$
5%	$\$ 756,639$	$\$ 568,722$
10%	$\$ 565,259$	$\$ 460,528$
15%	$\$ 412,730$	$\$ 370,241$
20%	$\$ 289,673$	$\$ 294,046$
25%	$\$ 189,280$	$\$ 229,088$
30%	$\$ 106,532$	$\$ 173,199$
35%	$\$ 37,680$	$\$ 124,709$
40%	$\$(20,111)$	$\$ 82,317$
45%	$\$(69,011)$	$\$ 44,998$
50%	$\$(110,700)$	$\$ 11,934$
55%	$\$(146,489)$	$\$(17,531)$
60%	$\$(177,414)$	$\$(43,930)$
65%	$\$(204,298)$	$\$(67,701)$

Figure 11.1 Ranking Mutually Exclusive Investments: NPV vs. IRR

(Panel C) Estimating the Break-Even Discount Rate

Year	Cash Flows		Differential Cash Flows
	AA+	BBR	BBR - AA+

- Using a 19.5\% discount rate the two projects have exactly the same NPV.
- For discount rates lower than this break-even 19.5\% rate, AA+ has the higher NPV whereas for higher discount rates BBR has the higher NPV.
- Trust NPV. Given the discount rate appropriate for valuing project cash flows, NPV gives the correct ranking of projects!

IRR of the Differential Cash Flows $=19.5 \%$

Modified Internal Rate of Return

Modified Internal Rate of Return (MIRR) eliminates the problem of multiple IRRs. MIRR rearranges the project cash flows such that there is only one change in the sign of the cash flows over the life of the project. There are two steps to computing MIRR.

Modified Internal Rate of Return

I. Modify the project's cash flow stream by discounting the negative future cash flows back to the present using the discount rate. The present value of these future negative cash flows is then added to the initial outlay to form a modified project cash flow stream
2. \quad MIRR $=\operatorname{IRR}$ (modified cash flow stream).

Step 1: Picture the Problem

Step 2: Decide on a Solution Strategy

- If we use IRR, we will get multiple IRRs as there are two sign changes in cash flow stream.
- We can use MIRR by doing the following:
- First, discount the year 2 negative cash flows back to year 0 using the 8% discount rate.
- Second, calculate the MIRR of the resulting cash flows for years 0 and I .

Step 3:Solve

Discount the year 2 negative cash flows to year 0 .

Step 3: Solve (cont.)

The modified cash flow stream is as follows:

Years	0	1	2
Cash flows	$-\$ 500,947$	$\$ 540,500$	$-\$ 0$

-Calculating the IRR for the above modified cash flows produces MIRR equal to 7.9%

Step 4: Analyze

We were able to compute IRR by eliminating the second sign change and thus modifying the cash flows.
MIRR is not the same as IRR as modified cash flows are discounted based on the discount rate used to calculate NPV (which is not the same as IRR).

Profitability Index

The profitability index ($\mathbf{P I}$) is a cost-benefit ratio equal to the present value of an investment's future cash flows divided by its initial cost.

Decision Criteria:

- If PI is greater than one, the NPV will be positive and the investment should be accepted
- When Pl is less than one, which indicates a bad investment, NPV will be negative and the project should be rejected.

Profitability Index

Potential problems with PI:
Project A has $\mathrm{PI}=1.3$
Project B has $\mathrm{PI}=1.1$
This suggests should choose Project A

Suppose investments are $\$ 10 \mathrm{MM}$,for $\mathrm{A}, \$ 100 \mathrm{MM}$ for B Which has larger NPV?

The Problem

PNG Pharmaceuticals is considering an investment in a new automated materials handling system that is expected to reduce its drug manufacturing costs by eliminating much of the waste currently involved in its specialty drug division. The new system will require an initial investment of $\$ 50,000$ and is expected to provide cash savings over the next six-year period as shown on next slide.

The Problem

Year	Expected Cash Flow
0	$-\$ 50,000$
1	$\$ 15,000$
2	$\$ 8,000$
3	$\$ 10,000$
4	$\$ 12,000$
5	$\$ 14,000$
6	$\$ 16,000$

Step 1: Picture the Problem

$$
\mathrm{PI}=\text { ? }
$$

Step 2: Decide on a Solution Strategy

The Pl for a project is equal to the present value of the project's expected cash flows for years I-6 divided by the initial outlay.
$\mathrm{PI}=\mathrm{PV}$ of expected cash flows \div-Initial outlay

Step 3: Solve

Step 1: Computing PV of Cash Inflows

Year	Expected Cash flow	Present Value at 10% discount rate
1	$\$ 15,000$	$\$ 13,636.36$
2	$\$ 8,000$	$\$ 6,611.57$
3	$\$ 10,000$	$\$ 7,513.14$
4	$\$ 12,000$	$\$ 8,196.16$
5	$\$ 14,000$	$\$ 8,692.90$
6	$\$ 16,000$	$\$ 9,031.58$
NPV of Expected Cash flows,		$\$ 53,681.72$
Years 1-6		

Step 3: Solve

Step 2: Compute the PI

PI $\quad=\mathrm{PV}$ of expected $\mathrm{CF}_{1-6} \div$ Initial Outlay
$=\$ 53,681.72 \div \$ 50,000$
$=1.073$

Step 4: Analyze

- PNG Pharmaceuticals requires an initial investment of $\$ 50,000$ and provides future cash flows that have a present value of $\$ 53,681.72$. Thus, PI is equal to I.073.
- It is an acceptable project since Pl is greater than one.

Payback Period

- The Payback period for an investment opportunity is the number of years needed to recover the initial cash outlay required to make the investment.
- Decision Criteria: Accept the project if the payback period is less than a pre-specified maximum number of years.

Limitations of Payback Period

I. It ignores the time value of money
2. It ignores cash flows that are generated by the project beyond the end of the payback period.
3. It utilizes an arbitrary cutoff criterion.

Table 11-1 Limitations of the Payback Period Criterion

	Project Long		Project Short		
	Cash Flows		Cash Flows		
	Annual	Cumulative	Annual	Cumulative	
Initial cash outlay	\$(100,000)	\$(100,000)	\$(100,000)	\$(100,000)	both projects because it takes
Year 1	70,000	$(30,000)$	50,000	$(50,000)$	two years to recover the cost of the initial outlay from the
$\text { Year } 2$	30,000	0	$\mathbf{5 0 , 0 0 0}$	0	cash inflows. However, Project Long looks a lot better because
Year 3	30,000	30,000	0	0	it continues to provide cash inflows after the payback year!
Year 4	25,000	55,000	0	0	
Year 5	10,000	65,000	0	0	

Discounted Payback Period

- Discounted payback period approach is similar except that it uses discounted cash flows to calculate the payback period.
- Decision Criteria: Accept the project if its discounted payback period is less than the pre-specified number of years.

Table 11.2 Discounted Payback Period Example (Discount Rate 17 percent)

Project Long

	Annual Cash Flows	Cumulative Cash Flows	Discounted Cash Flows	Cumulative Discounted Cash Flows	
Initial cash outlay	\$(100,000)	\$(100,000)	\$(100,000)	\$(100,000)	Discounted Payback equals 2.97 years for Project Long! Three years of discounted cash flows sum to a positive $\$ 476$. However, since we need to sum to 0 we do not need a full three years of discounted cash flows (we need $\$ 18,256 / \$ 18,731=.97$ of Year 3's cash inflow).
Year 1	70,000	$(30,000)$	59,829	$(40,171)$	
Year 2	30,000	0	21,915	$(18,256)$	
Year 3	30,000	30,000	18,731	476	
Year 4	25,000	55,000	13,341	13,817	
Year 5	10,000	65,000	4,561	18,378	

Project Short

| | Annual
 Cash Flows | Cumulative
 Cash Flows | Discounted
 Cash Flows | Cumulative
 Discounted
 Cash Flows |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Initial cash outlay | $\$(100,000)$ | $\$(100,000)$ | $\$(100,000)$ | $\$(100,000)$ |
| Year 1 | 50,000 | $(50,000)$ | 42,735 | $(57,265)$ |
| Year 2 | $\mathbf{5 0 , 0 0 0}$ | $\mathbf{0}$ | $\mathbf{3 6 , 5 2 6}$ | $(\mathbf{2 0 , 7 3 9)}$ |
| Year 3 | - | - | - | $(20,739)$ |
| Year 4 | - | - | - | $(20,739)$ |
| Year 5 | - | - | $(20,739)$ | |

Table 11.3 Basic Capital-Budgeting Techniques

\(\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}Investment

Criterion\end{array} \& Definition \& Decision Rule\end{array}\right]\)| Advantages |
| :--- |

A Glance at Actual Capital Budgeting Practices

- Figure II. 2 provides the results of a survey of the CFOs of large US firms, showing the popularity of various tools.
- The results show that NPV and IRR methods are by far the most widely used methods, although more than half the firms surveyed did use the Payback method.

Figure 11.2 Survey of the Popularity of Capital-Budgeting Methods

Source: John Graham and Campbell Harvey, "How Do CFOs Make Capital Budgeting and Capital Structure Decisions?" Journal of Applied Corporate Finance, Vol. 15, No. 1 (Spring 2002), 8-23.

